Eric (Jake) Laursen
  • CV
  • /
  • ai-ml/
  • python-for-data-science/
  • Mean, Median, & Mode
  • Standard Deviation & Variance
  • A Look At Data Distribution
  • Percentiles
  • Moments
  • Filtering Outliers
  • Covariance and Correlation
  • Conditional Probability
  • Linear Regression
  • Polynomial Regression
  • Multiple Regression
  • Train & Test
  • Naive Bayes
  • K-Means Clustering
  • XGBoost & Ensemble Learning
  • Support Vector Machines
  • Finding Similar Movies with Python
  • Finding More-Specific Similar Movies using Python
  • Using KNN to Find Similar Movies
  • Dimensional Reduction with Principal Component Analysis
  • Reinforcement Learning
  • K-Fold Cross-Validation
  • Analyzing Honey Production: EDA with Python
  • An Introduction to Tensorflow and Tensors
  • Working with matrixes

Standard Deviation & Variance

Standard Deviation and Variance

In [1]:
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt

dataMean = 100.0
stdDev = 50.0
numberOfDataPoints = 10000

incomes = np.random.normal(dataMean, stdDev, numberOfDataPoints)

plt.hist(incomes, 50)
plt.show()
output png
In [2]:
incomes.std()
Out [2]:
49.81824529525167
In [3]:
incomes.var()
Out [3]:
2481.8575642978653
Page Tags:
python
data-science
jupyter
learning
numpy